A great feature about using fragments in your activity is the ability to add, remove, replace, and perform other actions with them, in response to user interaction. Each set of changes that you commit to the activity is called a transaction and you can perform one using APIs in FragmentTransaction
. You can also save each transaction to a back stack managed by the activity, allowing the user to navigate backward through the fragment changes (similar to navigating backward through activities).
You can acquire an instance of FragmentTransaction
from the FragmentManager
like this:
FragmentManager fragmentManager =getFragmentManager()
; FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction()
;
Each transaction is a set of changes that you want to perform at the same time. You can set up all the changes you want to perform for a given transaction using methods such as add()
, remove()
, and replace()
. Then, to apply the transaction to the activity, you must call commit()
.
Before you call commit()
, however, you might want to call addToBackStack()
, in order to add the transaction to a back stack of fragment transactions. This back stack is managed by the activity and allows the user to return to the previous fragment state, by pressing the Back button.
For example, here's how you can replace one fragment with another, and preserve the previous state in the back stack:
// Create new fragment and transaction Fragment newFragment = new ExampleFragment(); FragmentTransaction transaction = getFragmentManager().beginTransaction(); // Replace whatever is in the fragment_container view with this fragment, // and add the transaction to the back stack transaction.replace(R.id.fragment_container, newFragment); transaction.addToBackStack(null); // Commit the transaction transaction.commit();
In this example, newFragment
replaces whatever fragment (if any) is currently in the layout container identified by the R.id.fragment_container
ID. By calling addToBackStack()
, the replace transaction is saved to the back stack so the user can reverse the transaction and bring back the previous fragment by pressing the Backbutton.
If you add multiple changes to the transaction (such as another add()
or remove()
) and calladdToBackStack()
, then all changes applied before you call commit()
are added to the back stack as a single transaction and the Back button will reverse them all together.
The order in which you add changes to a FragmentTransaction
doesn't matter, except:
- You must call
commit()
last - If you're adding multiple fragments to the same container, then the order in which you add them determines the order they appear in the view hierarchy
If you do not call addToBackStack()
when you perform a transaction that removes a fragment, then that fragment is destroyed when the transaction is committed and the user cannot navigate back to it. Whereas, if you do call addToBackStack()
when removing a fragment, then the fragment is stopped and will be resumed if the user navigates back.
Tip: For each fragment transaction, you can apply a transition animation, by calling setTransition()
before you commit.
Calling commit()
does not perform the transaction immediately. Rather, it schedules it to run on the activity's UI thread (the "main" thread) as soon as the thread is able to do so. If necessary, however, you may callexecutePendingTransactions()
from your UI thread to immediately execute transactions submitted bycommit()
. Doing so is usually not necessary unless the transaction is a dependency for jobs in other threads.
Caution: You can commit a transaction using commit()
only prior to the activity saving its state (when the user leaves the activity). If you attempt to commit after that point, an exception will be thrown. This is because the state after the commit can be lost if the activity needs to be restored. For situations in which its okay that you lose the commit, use commitAllowingStateLoss()
.
0 件のコメント:
コメントを投稿