2018年6月5日火曜日

機械学習

 最低限のAIレベルでは、手作業の中で何度も同じことを繰り返し実行しなければならなかった部分をプロセス自動化技術で置き換える。AIが機械学習を獲得すると、次のレベルに到達する。この場合、プログラムは観察結果と経験のデータを組み合わせて、モデルの構築を「学習」する。結果として得られたモデルは予測的、すなわち具体的な内容が分かりやすいもので、手近にあるデータからより多くの知識を得ることによって進化を続ける。
 機械学習は、以前は人間でなければ扱えないとされていた複雑な問題に主に導入されている。ただし、その解決法を繰り返してそのまま利用できることはほとんどないため、問題解決のプロセスは非常に時間とコストがかかるものとなっている。
 一方、プログラムにルールとユーザー体験を提供することを基本とするAIとは対照的に、機械学習は優れたパフォーマンスを発揮する明示的なアルゴリズムが利用できない演算タスクや、プログラムでは推論のルールしか提供できないタスクに採用される。その適用例といえるアプリケーションには、メールのフィルタリング、ネットワークへの侵入者や悪質な行為を行う部内者の検出、光学文字認識(OCR)、ランク付けの学習、コンピュータビジョンなどがある。
 機械学習の商用応用例はMicrosoftで見られる。同社のDynamics CRMサービスを使えば、ユーザーは問題発生からの時間を追うことでパターンを特定し、解決までの時間を短縮し、パフォーマンスを向上させることができる。
 Cisco Systemsは最近、暗号化されたトラフィックでマルウェアを検出する暗号化トラフィック分析(ETA)機能を発表した。ETAは、接続内の先頭のデータパケットだけでなく、パケットの長さと時間のシーケンスや、フロー内のパケットペイロード間のバイト分布も分析する。この検出プロセスは、機械学習モデルを拡張することによって、時間の経過とともに改善される。その際、機械学習モデルがリソースを独占したり、トラフィックを減速させたりすることはない。ETAを実装している最初の製品では、NetFlowデータを使用する。このデータは、Ciscoの「Catalyst 9000」とサービス統合型ルーター「4000シリーズ」をセキュリティアナリティクスの「Cisco Stealthwatch」と統合したシステムで得られるものだ。

0 件のコメント:

コメントを投稿